03/02/23
  • Πανελλήνιες 2021
  • Παγκύπριες
  • Live Νέα για Μαθηματικά
  • I Love ♥ Math
  • Math Movies & Series
  • Κομπιουτεράκι

Mathhmatika.grMathhmatika.gr 1+1=2

  • Home
  • Math News
    • Πανελλήνιες 2021 – Live Νέα
    • Μαθηματικά Νέα & Ειδήσεις
    • Mathematics News – Live
  • Τράπεζα θεμάτων
    • Άλγεβρα – Τράπεζα Θεμάτων
    • Γεωμετρία – Τράπεζα Θεμάτων
  • Βιβλία
    • Σχολικά Βιβλία Δημοτικού
    • Σχολικά Βιβλία Γυμνασίου
    • Σχολικά Βιβλία Λυκείου
    • Λυσάρια Σχολικών Βιβλίων
  • Υλη
    • Υλη Μαθηματικών Δημοτικού
    • Υλη Μαθηματικών Γυμνασίου
    • Υλη Μαθηματικών Λυκείου ΓΕΛ
    • Υλη Μαθηματικών ΕΠΑΛ
  • Πανελλήνιες
    • Θέματα Πανελληνίων
    • Γενικά για τις Πανελλήνιες
  • Βάσεις
    • Βάσεις ΓΕΛ – ΕΠΑΛ – 10%
    • Βάσεις Γενικό Λύκειο
    • Βάσεις Εσπερινό Γενικό
    • Βάσεις Ημερήσιο ΕΠΑΛ
    • Βάσεις Εισαγωγής 10%
    • Βάσεις ανά Πόλη
    • Βάσεις σχολών Αθήνας
    • Βάσεις στη Θεσσαλονίκη
    • Βάσεις σχολών Πάτρας
    • Βάσεις σχολών Ηράκλειο
    • Βάσεις ανά Περιφέρεια
    • Βάσεις – Μόρια στην Αττική
    • Βάσεις – Μόρια Μακεδονία
    • Βάσεις στην Πελοπόννησο
    • Βάσεις – Μόρια στην Κρήτη
    • Βάσεις ανά Ομάδα Σχολών
    • Βάσεις Οικονομικές Σχολές
    • Βάσεις στα Πολυτεχνεία
    • Βάσεις Ιατρικές & Υγείας
    • Βάσεις Στρατιωτικές Σχολές
    • Βάσεις ανά Ίδρυμα
    • Βάσεις στο Καποδιστριακό
    • Βάσεις στο Αριστοτέλειο
    • Πανεπιστήμιο Πατρών
    • Πανεπιστήμιο Κρήτης
  • Math ΑΕΙ
    • Μαθηματικό Αθήνας | Ε.Κ.Π.Α
    • Μαθηματικό Θεσσαλονίκης
    • Μαθηματικό Πάτρας
    • Μαθηματικών Ηρακλείου | Κρήτη
    • Μαθηματικό Ιωαννίνων
    • Μαθηματικό Σάμου | Αιγαίο
    • Μαθηματικό Καστοριάς
    • Μαθηματικό Λαμίας | Θεσσαλία
    • Μαθηματικό Λευκωσίας | Κύπρος
    • Στατιστική Αθήνας | Ο.Π.Α.
    • Στατιστική Γρεβενών
    • Στατιστική Σάμου | Αιγαίο
    • Στατιστική Πειραιά
    • Εφαρμοσμένων Μαθ. ΕΜΠ
    • Εφαρμοσμένων Μαθ. Ηρακλείου
  • Μαθηματικοί
    • Έλληνες Μαθηματικοί
    • Γυναίκες Μαθηματικοί
    • Ξένοι Μαθηματικοί
    • Αρχαίοι Μαθηματικοί
  • Υπολογισμοί
    • Αλγεβρικοί Υπολογισμοί – Πράξεις
    • Υπολογισμοί Εμβαδών
    • Υπολογισμοί Όγκων
    • Υπολογισμοί Περιμέτρων
    • Υπολογισμοί σε Σχήματα
    • Υπολογισμοί σε Στερεά
    • Μετατροπή Μονάδων Μέτρησης
  • Δημοτικό
  • Γυμνάσιο
  • Λύκειο
  • ΕΠΑΛ
Υπολόγισε online την τετραγωνική ρίζα ενός θετικού αριθμού. Ορισμός

Υπολόγισε online την τετραγωνική ρίζα ενός θετικού αριθμού. Ορισμός

03/03/2019 Αλγεβρικοί υπολογισμοί - πράξεις, Υπολογισμοί - Calculators

Μαθηματική τετραγωνική ρίζα υπολογισμός online

Εύρεση τετραγωνικής ρίζας αριθμού online. Square Root (sqrt) Calculator

Συμπληρώστε το απαιτούμενο πεδίο με τον αριθμό για τον οποίο επιθυμείτε να υπολογίσετε την τετραγωνική ρίζα του και κάντε μετά κλικ εκτός του πεδίου για να γίνει ο υπολογισμός

Δεδομένα - Αριθμός
Η τετραγωνική ρίζα του αριθμού:
Αποτελέσματα - Ρίζα
Είναι ο αριθμός:

Ρίζες πραγματικών αριθμών – Roots of Real Numbers

Τετραγωνική ρίζα – Square Root

Υπολογίστε online την τετραγωνική ρίζα ενός αριθμού. Εύρεση μαθηματικής τετραγωνικής ρίζας. Root CalculatorΤετραγωνική ρίζα είναι η νιοστή ρίζα για ν=2, δηλαδή τετραγωνική ρίζα του α είναι ο μη αρνητικός πραγματικός αριθμός β, αν β2=α. Η τετραγωνική ρίζα του 2 είναι ο πρώτος αριθμός που ανακαλύφθηκε ότι δεν είναι ρητός.

Επιπλέον, η ιδέα της τετραγωνικής ρίζας έχει επεκταθεί σε όλους τους αριθμούς, αν και ο αυστηρός ορισμός της την περιορίζει στους θετικούς αριθμούς και το 0.

Η τετραγωνική ρίζα του αριθμού α συμβολίζεται με √α.  Το όνομα τετραγωνική ρίζα ήταν το πρώτο όνομα της και καθιερώθηκε, γιατί αποτελεί ρίζα του τετραγώνου, δηλαδή της εξίσωσης x2=α (το x2 ονομάζεται δεύτερη δύναμη του x, ή τετράγωνο του x, γιατί παραπέμπει στον τύπο εμβαδού του τετραγώνου). | via

Νιοστή ρίζα – Nth Root

Νιοστή ρίζα του αριθμού α ονομάζεται η τιμή του x που επαληθεύει την εξίσωση

$$ x^v= a $$

όπου x>0 και ν φυσικός.
Δηλαδή, νιοστή ρίζα ενός μη αρνητικού αριθμού ονομάζουμε τον μη αρνητικό αριθμό x που όταν υψωθεί στη ν δίνει τον α, δηλαδή :

$$ x= √^v{a} $$

Για ν = 2 έχουμε την τετραγωνική ρίζα του α που συμβολίζεται και √a. Επίσης είναι φανερό ότι η τετραγωνική ρίζα μπορεί να γραφεί a1/2.

Αντίστοιχα η νιοστή ρίζα συμβολίζεται $$ √^v{a} $$  ή και a1/v.

Το $$ √^4{a} $$  διαβάζεται τέταρτη ρίζα του α κ.ο.κ..

Δείτε επίσης :

Υπολογισμός νιοστής ρίζας ενός αριθμού

Πραγματικοί αριθμοί

Στα μαθηματικά, οι πραγματικοί αριθμοί γίνονται αντιληπτοί διαισθητικά ως το σύνολο όλων των αριθμών που είναι σε ένα προς ένα αντιστοιχία με τα σημεία μιας άπειρης ευθείας, που καλείται ευθεία των πραγματικών αριθμών ή πραγματικός άξονας.

Ο όρος «πραγματικός αριθμός» πλάστηκε εκ των υστέρων σε αντιδιαστολή προς τους «φανταστικούς αριθμούς», των οποίων η ένωση με τους πραγματικούς δίνει τους μιγαδικούς.

Online #Υπολογισμός τετραγωνικής #ρίζας αριθμού #rootmath #μαθηματικά
Share
  • Facebook
  • Twitter
  • LinkedIn

ΕτικέτεςΆλγεβρα Αριθμητικές πράξεις Μαθητής

Σχετικά στο Mathhmatika.gr

Μόρια Πανελλαδικών Εξετάσεων ΓΕΛ ● Υπολογισμός μορίων υποψηφίων 2021

Υπολογισμός μορίων υποψηφίων ΓΕΛ. Πόσα μόρια έχω; ● Πανελλήνιες 2021

05/01/2021

Απλή μέθοδος των τριών με ανάλογα ή αντιστρόφως ανάλογα ποσά online

Κάνε online την απλή μέθοδο των τριών. Επεξήγηση μεθόδου. Χιαστί

11/05/2019

Υπολογισμός εκπτώσεων. Ποσοστό ή ποσό έκπτωσης, τελική & αρχική τιμή

Εκπτώσεις. Ποσό πριν και μετά την έκπτωση. Αρχική και τελική τιμή.

09/05/2019

Υπολογισμός της Διακύμανσης ως Μέτρο Διασποράς ενός συνόλου αριθμών

Υπολόγισε τη διακύμανση ενός συνόλου αριθμών. Μέτρο Διασποράς

05/05/2019

Υπολογισμός της Τυπικής Απόκλισης ως Μέτρο Διασποράς μίας ομάδας τιμών

Υπολόγισε την τυπική απόκλιση ενός συνόλου αριθμών. Μέτρο Διασποράς

04/05/2019

Εύρεση επικρατούσας ή δεσπόζουσας ή συχνότερης τιμής σε σύνολο αριθμών

Βρες την επικρατούσα τιμή (υπάρχει περισσότερες φορές) σε ένα σύνολο

04/05/2019

Πρόσφατα στο «Μαθηματικά»

  • Ομάδες Προσανατολισμού - Επιστημονικά Πεδία ● Ό,τι πρέπει να ξέρετε

    Ομάδες Προσανατολισμού – Επιστημονικά Πεδία ● Ό,τι πρέπει να ξέρετε

    01/08/2021
  • Τι προσανατολισμό – πεδίο να διαλέξω για να σπουδάσω Μαθηματικά;

    01/08/2021
  • Σχολές πασπαρτού! Τμήματα που υπάρχουν σε όλα τα επιστημονικά πεδία

    Σχολές πασπαρτού! Τμήματα που υπάρχουν σε όλα τα επιστημονικά πεδία

    01/08/2021
  • Πρόγραμμα επαναληπτικών πανελλαδικών εξετάσεων 2020 για ΓΕΛ & ΕΠΑΛ

    Πρόγραμμα επαναληπτικών πανελλαδικών εξετάσεων 2021 για ΓΕΛ & ΕΠΑΛ

    01/08/2021
  • Εξεταστέα ύλη Μαθηματικών Προσανατολισμού Γ’ Λυκείου – 2019-2020

    Εξεταστέα ύλη Μαθηματικών Προσανατολισμού Γ’ Λυκείου 2021 – 2022

    18/07/2021
  • Εξεταστέα ύλη Μαθηματικών – Άλγεβρας Γ’ Ημερήσιου ΕΠΑΛ – 2019-2020

    Εξεταστέα ύλη Μαθηματικών – Άλγεβρας Γ’ Ημερήσιου ΕΠΑΛ 2021 – 2022

    18/07/2021
© Copyright 2023 Mathhmatika.gr About us Πολιτική Απορρήτου Όροι Χρήσης Sitemap Επικοινωνία

Εισαγωγή/επεξεργασία συνδέσμου

Δώστε την URL προορισμού

Ή επιλέξτε από τα υπάρχοντα άρθρα/σελίδες

    Δεν ορίσατε όρο αναζήτησης. Προβάλλονται τα πιο πρόσφατα. Αναζήτηση ή χρησιμοποιήστε το πάνω και κάτω πλήκτρο να επιλέξετε ένα στοιχείο.