02/02/23
  • Πανελλήνιες 2021
  • Παγκύπριες
  • Live Νέα για Μαθηματικά
  • I Love ♥ Math
  • Math Movies & Series
  • Κομπιουτεράκι

Mathhmatika.grMathhmatika.gr 1+1=2

  • Home
  • Math News
    • Πανελλήνιες 2021 – Live Νέα
    • Μαθηματικά Νέα & Ειδήσεις
    • Mathematics News – Live
  • Τράπεζα θεμάτων
    • Άλγεβρα – Τράπεζα Θεμάτων
    • Γεωμετρία – Τράπεζα Θεμάτων
  • Βιβλία
    • Σχολικά Βιβλία Δημοτικού
    • Σχολικά Βιβλία Γυμνασίου
    • Σχολικά Βιβλία Λυκείου
    • Λυσάρια Σχολικών Βιβλίων
  • Υλη
    • Υλη Μαθηματικών Δημοτικού
    • Υλη Μαθηματικών Γυμνασίου
    • Υλη Μαθηματικών Λυκείου ΓΕΛ
    • Υλη Μαθηματικών ΕΠΑΛ
  • Πανελλήνιες
    • Θέματα Πανελληνίων
    • Γενικά για τις Πανελλήνιες
  • Βάσεις
    • Βάσεις ΓΕΛ – ΕΠΑΛ – 10%
    • Βάσεις Γενικό Λύκειο
    • Βάσεις Εσπερινό Γενικό
    • Βάσεις Ημερήσιο ΕΠΑΛ
    • Βάσεις Εισαγωγής 10%
    • Βάσεις ανά Πόλη
    • Βάσεις σχολών Αθήνας
    • Βάσεις στη Θεσσαλονίκη
    • Βάσεις σχολών Πάτρας
    • Βάσεις σχολών Ηράκλειο
    • Βάσεις ανά Περιφέρεια
    • Βάσεις – Μόρια στην Αττική
    • Βάσεις – Μόρια Μακεδονία
    • Βάσεις στην Πελοπόννησο
    • Βάσεις – Μόρια στην Κρήτη
    • Βάσεις ανά Ομάδα Σχολών
    • Βάσεις Οικονομικές Σχολές
    • Βάσεις στα Πολυτεχνεία
    • Βάσεις Ιατρικές & Υγείας
    • Βάσεις Στρατιωτικές Σχολές
    • Βάσεις ανά Ίδρυμα
    • Βάσεις στο Καποδιστριακό
    • Βάσεις στο Αριστοτέλειο
    • Πανεπιστήμιο Πατρών
    • Πανεπιστήμιο Κρήτης
  • Math ΑΕΙ
    • Μαθηματικό Αθήνας | Ε.Κ.Π.Α
    • Μαθηματικό Θεσσαλονίκης
    • Μαθηματικό Πάτρας
    • Μαθηματικών Ηρακλείου | Κρήτη
    • Μαθηματικό Ιωαννίνων
    • Μαθηματικό Σάμου | Αιγαίο
    • Μαθηματικό Καστοριάς
    • Μαθηματικό Λαμίας | Θεσσαλία
    • Μαθηματικό Λευκωσίας | Κύπρος
    • Στατιστική Αθήνας | Ο.Π.Α.
    • Στατιστική Γρεβενών
    • Στατιστική Σάμου | Αιγαίο
    • Στατιστική Πειραιά
    • Εφαρμοσμένων Μαθ. ΕΜΠ
    • Εφαρμοσμένων Μαθ. Ηρακλείου
  • Μαθηματικοί
    • Έλληνες Μαθηματικοί
    • Γυναίκες Μαθηματικοί
    • Ξένοι Μαθηματικοί
    • Αρχαίοι Μαθηματικοί
  • Υπολογισμοί
    • Αλγεβρικοί Υπολογισμοί – Πράξεις
    • Υπολογισμοί Εμβαδών
    • Υπολογισμοί Όγκων
    • Υπολογισμοί Περιμέτρων
    • Υπολογισμοί σε Σχήματα
    • Υπολογισμοί σε Στερεά
    • Μετατροπή Μονάδων Μέτρησης
  • Δημοτικό
  • Γυμνάσιο
  • Λύκειο
  • ΕΠΑΛ
Υπολόγισε το παραγοντικό ενός φυσικού αριθμού στα Μαθηματικά online

Βρες online το παραγοντικό ενός αριθμού. Επεξήγηση. 2!, 3!, 4! κτλ

30/04/2018 Αλγεβρικοί υπολογισμοί - πράξεις, Υπολογισμοί - Calculators

Υπολόγισε online το παραγοντικό ενός φυσικού αριθμού

Factorial Calculator n!

Υπολογισμός online – βρες το παραγοντικό ενός φυσικού αριθμού. Factorial Calculator n!

Δεδομένα
Το παραγοντικό του αριθμού:
Αποτελέσματα
Είναι ο αριθμός (ν!=)

Παραγοντικό ενός φυσικού αριθμού – Μαθηματικά

Υπολόγισε το παραγοντικό ενός φυσικού αριθμού στα Μαθηματικά online

Στα μαθηματικά τo παραγοντικό ενός φυσικού αριθμού ν συμβολίζεται με ν!, διαβάζεται νι παραγοντικό, και είναι το γινόμενο όλων των θετικών ακεραίων μικρότερων ή ίσων με ν.

ν! = 1 ∙ 2 ∙ 3 ∙ … ∙ ν

Για παράδειγμα,

2!=1·2= 2

3!=1·2·3= 6

4!=1·2·3·4= 24

5!=1·2·3·4·5= 120

8!=1·2·3·4·5·6·7·8= 40.320

10!=1·2·3·4·5·6·7·8·9·10= 3.628.800

12!=1·2·3·4·5·6·7·8·9·10·11·12= 479.001.600

Το παραγοντικό ενός αριθμού ν εκφράζει και το πλήθος των δυνατών μεταθέσεων των ν στοιχείων ενός συνόλου

Δηλαδή το πλήθος των διαφορετικών τρόπων με τους οποίους μπορούμε να βάλουμε σε μια σειρά τα ν στοιχεία ενός συνόλου.

Συμβατικά 0! = 1! = 1

Ισχύει η σχέση ν! = (ν-1)! ∙ ν

Μαθηματικός τύπος υπολογισμού για το παραγοντικό αριθμό

Ο μαθηματικός τύπος εύρεσης για το παραγοντικό ενός αριθμού είναι:

ν! = 1 ∙ 2 ∙ 3 ∙ … ∙ ν

ν= θετικός ακέραιος – μη αρνητικός αριθμός | via

Συνάρτηση FACT στο Excel

Σε γενικές γραμμές, μπορείτε να χρησιμοποιήσετε ένα παραγοντικό για να μετρήσετε τον αριθμό των τρόπων με την οποία μπορούν να τακτοποιηθούν μια ομάδα στοιχείων διακριτές (ονομάζεται επίσης διατάξεων)

Σύνταξη συνάρτησης – function FACT στο Εξέλ

FACT(αριθμός)

Η σύνταξη της συνάρτησης FACT περιλαμβάνει τα παρακάτω ορίσματα:

Αριθμός Υποχρεωτικό. Ο μη αρνητικός αριθμός, του οποίου θέλετε να υπολογίσετε το παραγοντικό.

Εάν το όρισμα αριθμός δεν είναι ακέραιος, τα δεκαδικά ψηφία περικόπτονται.

Online #Υπολογισμός - #Παραγοντικό φυσικού αριθμού #Μαθηματικά #FACT
Share
  • Facebook
  • Twitter
  • LinkedIn

ΕτικέτεςΆλγεβρα Αριθμητικές πράξεις Μαθητής

Σχετικά στο Mathhmatika.gr

Μόρια Πανελλαδικών Εξετάσεων ΓΕΛ ● Υπολογισμός μορίων υποψηφίων 2021

Υπολογισμός μορίων υποψηφίων ΓΕΛ. Πόσα μόρια έχω; ● Πανελλήνιες 2021

05/01/2021

Απλή μέθοδος των τριών με ανάλογα ή αντιστρόφως ανάλογα ποσά online

Κάνε online την απλή μέθοδο των τριών. Επεξήγηση μεθόδου. Χιαστί

11/05/2019

Υπολογισμός εκπτώσεων. Ποσοστό ή ποσό έκπτωσης, τελική & αρχική τιμή

Εκπτώσεις. Ποσό πριν και μετά την έκπτωση. Αρχική και τελική τιμή.

09/05/2019

Υπολογισμός της Διακύμανσης ως Μέτρο Διασποράς ενός συνόλου αριθμών

Υπολόγισε τη διακύμανση ενός συνόλου αριθμών. Μέτρο Διασποράς

05/05/2019

Εύρεση επικρατούσας ή δεσπόζουσας ή συχνότερης τιμής σε σύνολο αριθμών

Βρες την επικρατούσα τιμή (υπάρχει περισσότερες φορές) σε ένα σύνολο

04/05/2019

Υπολογισμός της Τυπικής Απόκλισης ως Μέτρο Διασποράς μίας ομάδας τιμών

Υπολόγισε την τυπική απόκλιση ενός συνόλου αριθμών. Μέτρο Διασποράς

04/05/2019

Πρόσφατα στο «Μαθηματικά»

  • Τι προσανατολισμό – πεδίο να διαλέξω για να σπουδάσω Μαθηματικά;

    01/08/2021
  • Σχολές πασπαρτού! Τμήματα που υπάρχουν σε όλα τα επιστημονικά πεδία

    Σχολές πασπαρτού! Τμήματα που υπάρχουν σε όλα τα επιστημονικά πεδία

    01/08/2021
  • Ομάδες Προσανατολισμού - Επιστημονικά Πεδία ● Ό,τι πρέπει να ξέρετε

    Ομάδες Προσανατολισμού – Επιστημονικά Πεδία ● Ό,τι πρέπει να ξέρετε

    01/08/2021
  • Πρόγραμμα επαναληπτικών πανελλαδικών εξετάσεων 2020 για ΓΕΛ & ΕΠΑΛ

    Πρόγραμμα επαναληπτικών πανελλαδικών εξετάσεων 2021 για ΓΕΛ & ΕΠΑΛ

    01/08/2021
  • Εξεταστέα ύλη Μαθηματικών Προσανατολισμού Γ’ Λυκείου – 2019-2020

    Εξεταστέα ύλη Μαθηματικών Προσανατολισμού Γ’ Λυκείου 2021 – 2022

    18/07/2021
  • Εξεταστέα ύλη Μαθηματικών – Άλγεβρας Γ’ Ημερήσιου ΕΠΑΛ – 2019-2020

    Εξεταστέα ύλη Μαθηματικών – Άλγεβρας Γ’ Ημερήσιου ΕΠΑΛ 2021 – 2022

    18/07/2021
© Copyright 2023 Mathhmatika.gr About us Πολιτική Απορρήτου Όροι Χρήσης Sitemap Επικοινωνία

Εισαγωγή/επεξεργασία συνδέσμου

Δώστε την URL προορισμού

Ή επιλέξτε από τα υπάρχοντα άρθρα/σελίδες

    Δεν ορίσατε όρο αναζήτησης. Προβάλλονται τα πιο πρόσφατα. Αναζήτηση ή χρησιμοποιήστε το πάνω και κάτω πλήκτρο να επιλέξετε ένα στοιχείο.