08/02/23
  • Πανελλήνιες 2021
  • Παγκύπριες
  • Live Νέα για Μαθηματικά
  • I Love ♥ Math
  • Math Movies & Series
  • Κομπιουτεράκι

Mathhmatika.grMathhmatika.gr 1+1=2

  • Home
  • Math News
    • Πανελλήνιες 2021 – Live Νέα
    • Μαθηματικά Νέα & Ειδήσεις
    • Mathematics News – Live
  • Τράπεζα θεμάτων
    • Άλγεβρα – Τράπεζα Θεμάτων
    • Γεωμετρία – Τράπεζα Θεμάτων
  • Βιβλία
    • Σχολικά Βιβλία Δημοτικού
    • Σχολικά Βιβλία Γυμνασίου
    • Σχολικά Βιβλία Λυκείου
    • Λυσάρια Σχολικών Βιβλίων
  • Υλη
    • Υλη Μαθηματικών Δημοτικού
    • Υλη Μαθηματικών Γυμνασίου
    • Υλη Μαθηματικών Λυκείου ΓΕΛ
    • Υλη Μαθηματικών ΕΠΑΛ
  • Πανελλήνιες
    • Θέματα Πανελληνίων
    • Γενικά για τις Πανελλήνιες
  • Βάσεις
    • Βάσεις ΓΕΛ – ΕΠΑΛ – 10%
    • Βάσεις Γενικό Λύκειο
    • Βάσεις Εσπερινό Γενικό
    • Βάσεις Ημερήσιο ΕΠΑΛ
    • Βάσεις Εισαγωγής 10%
    • Βάσεις ανά Πόλη
    • Βάσεις σχολών Αθήνας
    • Βάσεις στη Θεσσαλονίκη
    • Βάσεις σχολών Πάτρας
    • Βάσεις σχολών Ηράκλειο
    • Βάσεις ανά Περιφέρεια
    • Βάσεις – Μόρια στην Αττική
    • Βάσεις – Μόρια Μακεδονία
    • Βάσεις στην Πελοπόννησο
    • Βάσεις – Μόρια στην Κρήτη
    • Βάσεις ανά Ομάδα Σχολών
    • Βάσεις Οικονομικές Σχολές
    • Βάσεις στα Πολυτεχνεία
    • Βάσεις Ιατρικές & Υγείας
    • Βάσεις Στρατιωτικές Σχολές
    • Βάσεις ανά Ίδρυμα
    • Βάσεις στο Καποδιστριακό
    • Βάσεις στο Αριστοτέλειο
    • Πανεπιστήμιο Πατρών
    • Πανεπιστήμιο Κρήτης
  • Math ΑΕΙ
    • Μαθηματικό Αθήνας | Ε.Κ.Π.Α
    • Μαθηματικό Θεσσαλονίκης
    • Μαθηματικό Πάτρας
    • Μαθηματικών Ηρακλείου | Κρήτη
    • Μαθηματικό Ιωαννίνων
    • Μαθηματικό Σάμου | Αιγαίο
    • Μαθηματικό Καστοριάς
    • Μαθηματικό Λαμίας | Θεσσαλία
    • Μαθηματικό Λευκωσίας | Κύπρος
    • Στατιστική Αθήνας | Ο.Π.Α.
    • Στατιστική Γρεβενών
    • Στατιστική Σάμου | Αιγαίο
    • Στατιστική Πειραιά
    • Εφαρμοσμένων Μαθ. ΕΜΠ
    • Εφαρμοσμένων Μαθ. Ηρακλείου
  • Μαθηματικοί
    • Έλληνες Μαθηματικοί
    • Γυναίκες Μαθηματικοί
    • Ξένοι Μαθηματικοί
    • Αρχαίοι Μαθηματικοί
  • Υπολογισμοί
    • Αλγεβρικοί Υπολογισμοί – Πράξεις
    • Υπολογισμοί Εμβαδών
    • Υπολογισμοί Όγκων
    • Υπολογισμοί Περιμέτρων
    • Υπολογισμοί σε Σχήματα
    • Υπολογισμοί σε Στερεά
    • Μετατροπή Μονάδων Μέτρησης
  • Δημοτικό
  • Γυμνάσιο
  • Λύκειο
  • ΕΠΑΛ
Βρες το εμβαδόν ενός παραλληλογράμμου online. Τύπος – Επεξήγηση

Βρες το εμβαδόν ενός παραλληλογράμμου online. Τύπος – Επεξήγηση

01/08/2015 Υπολογισμοί - Calculators, Υπολογισμοί εμβαδών

Υπολογισμός εμβαδού παραλληλογράμμου online

Area of a Parallelogram online calculator

Δεδομένα
Βάση (a)
Ύψος (h)
Αποτελέσματα
Εμβαδόν =

Παραλληλόγραμμο – Ευκλείδεια Γεωμετρία

Το σημείο τομής των διαγωνίων του λέγεται κέντρο του παραλληλογράμμου. Η απόσταση δύο απέναντι πλευρών του παραλληλογράμμου λέγεται ύψος, ενώ οι απέναντι πλευρές λέγονται βάσεις ως προς το ύψος αυτό (κάθε παραλληλόγραμμο έχει δύο ύψη).

Παραλληλόγραμμο ονομάζεται το τετράπλευρο που έχει τις απέναντι πλευρές του παράλληλες

Διαγώνιος Παραλληλογράμμου

Ονομάζεται το ευθύγραμμο τμήμα που ενώνει δύο απέναντι κορυφές. Το σημείο τομής των διαγωνίων ονομάζεται κέντρο του παραλληλογράμμου.

Ύψος Παραλληλογράμμου

Ονομάζεται κάθε ευθύγραμμο τμήμα που έχει τα άκρα του στις ευθείες των απέναντι πλευρών και είναι κάθετο σε αυτές. (Οι απέναντι πλευρές ονομάζονται βάσεις ως προς το αντίστοιχο ύψος).

Εμβαδόν του παραλληλογράμμου, μαθηματικός τύπος Area of a Parallelogram

Εμβαδόν του παραλληλογράμμου, μαθηματικός τύπος Area of a Parallelogram

Το εμβαδόν του παραλληλογράμμου βρίσκεται πολλαπλασιάζοντας την βάση του σχήματος με το ύψος και δίδεται από τον μαθηματικό τύπο :

Eμβαδόν = a x h

a= Βάση h= Ύψος

Παραλληλόγραμμο – Ιδιότητες

  • Σε κάθε παραλληλόγραμμο οι απέναντι πλευρές είναι ίσες και οι απέναντι γωνίες είναι ίσες.
  • Σε κάθε παραλληλόγραμμο οι διαγώνιοι διχοτομούνται.
  • Το κέντρο ενός παραλληλογράμμου είναι κέντρο συμμετρίας του.

Κριτήρια παραλληλογράμμου

Κριτήρια παραλληλογράμμου

Ένα τετράπλευρο είναι παραλληλόγραμμο αν και μόνο αν ισχύει μία από τις παρακάτω προτάσεις

  • Οι απέναντι πλευρές είναι ίσες ανά δύο.
  • Δύο απέναντι πλευρές είναι ίσες και παράλληλες.
  • Οι απέναντι γωνίες είναι ίσες ανά δύο.
  • Οι διαγώνιοί του παραλληλόγραμμου διχοτομούνται.

Είδη Παραλληλογράμμων

  • Ορθογώνιο. Ονομάζεται το παραλληλόγραμμο που έχει μία ορθή γωνία.
  • Ρόμβος. Ονομάζεται το παραλληλόγραμμο που έχει δύο διαδοχικές πλευρές ίσες.
  • Τετράγωνο. Ονομάζεται το παραλληλόγραμμο που είναι ορθογώνιο και ρόμβος.
Online #παραλληλόγραμμο - #Υπολογισμός #εμβαδόν - Ευκλείδεια #γεωμετρία
Share
  • Facebook
  • Twitter
  • LinkedIn

ΕτικέτεςΓεωμετρία Μαθητής

Σχετικά στο Mathhmatika.gr

Απλή μέθοδος των τριών με ανάλογα ή αντιστρόφως ανάλογα ποσά online

Κάνε online την απλή μέθοδο των τριών. Επεξήγηση μεθόδου. Χιαστί

11/05/2019

Υπολογισμός εκπτώσεων. Ποσοστό ή ποσό έκπτωσης, τελική & αρχική τιμή

Εκπτώσεις. Ποσό πριν και μετά την έκπτωση. Αρχική και τελική τιμή.

09/05/2019

Υπολογισμός της Διακύμανσης ως Μέτρο Διασποράς ενός συνόλου αριθμών

Υπολόγισε τη διακύμανση ενός συνόλου αριθμών. Μέτρο Διασποράς

05/05/2019

Υπολογισμός της Τυπικής Απόκλισης ως Μέτρο Διασποράς μίας ομάδας τιμών

Υπολόγισε την τυπική απόκλιση ενός συνόλου αριθμών. Μέτρο Διασποράς

04/05/2019

Εύρεση επικρατούσας ή δεσπόζουσας ή συχνότερης τιμής σε σύνολο αριθμών

Βρες την επικρατούσα τιμή (υπάρχει περισσότερες φορές) σε ένα σύνολο

04/05/2019

Πολλαπλασιασμός αριθμού με πίνακα – Βαθμωτός πολλαπλασιασμός online

Βρες online το γινόμενο ενός αριθμού με έναν πίνακα. Πολλαπλασιασμός

21/04/2019

Πρόσφατα στο «Μαθηματικά»

  • Ομάδες Προσανατολισμού - Επιστημονικά Πεδία ● Ό,τι πρέπει να ξέρετε

    Ομάδες Προσανατολισμού – Επιστημονικά Πεδία ● Ό,τι πρέπει να ξέρετε

    01/08/2021
  • Τι προσανατολισμό – πεδίο να διαλέξω για να σπουδάσω Μαθηματικά;

    01/08/2021
  • Σχολές πασπαρτού! Τμήματα που υπάρχουν σε όλα τα επιστημονικά πεδία

    Σχολές πασπαρτού! Τμήματα που υπάρχουν σε όλα τα επιστημονικά πεδία

    01/08/2021
  • Πρόγραμμα επαναληπτικών πανελλαδικών εξετάσεων 2020 για ΓΕΛ & ΕΠΑΛ

    Πρόγραμμα επαναληπτικών πανελλαδικών εξετάσεων 2021 για ΓΕΛ & ΕΠΑΛ

    01/08/2021
  • Εξεταστέα ύλη Μαθηματικών Προσανατολισμού Γ’ Λυκείου – 2019-2020

    Εξεταστέα ύλη Μαθηματικών Προσανατολισμού Γ’ Λυκείου 2021 – 2022

    18/07/2021
  • Εξεταστέα ύλη Μαθηματικών – Άλγεβρας Γ’ Ημερήσιου ΕΠΑΛ – 2019-2020

    Εξεταστέα ύλη Μαθηματικών – Άλγεβρας Γ’ Ημερήσιου ΕΠΑΛ 2021 – 2022

    18/07/2021
© Copyright 2023 Mathhmatika.gr About us Πολιτική Απορρήτου Όροι Χρήσης Sitemap Επικοινωνία

Εισαγωγή/επεξεργασία συνδέσμου

Δώστε την URL προορισμού

Ή επιλέξτε από τα υπάρχοντα άρθρα/σελίδες

    Δεν ορίσατε όρο αναζήτησης. Προβάλλονται τα πιο πρόσφατα. Αναζήτηση ή χρησιμοποιήστε το πάνω και κάτω πλήκτρο να επιλέξετε ένα στοιχείο.