03/02/23
  • Πανελλήνιες 2021
  • Παγκύπριες
  • Live Νέα για Μαθηματικά
  • I Love ♥ Math
  • Math Movies & Series
  • Κομπιουτεράκι

Mathhmatika.grMathhmatika.gr 1+1=2

  • Home
  • Math News
    • Πανελλήνιες 2021 – Live Νέα
    • Μαθηματικά Νέα & Ειδήσεις
    • Mathematics News – Live
  • Τράπεζα θεμάτων
    • Άλγεβρα – Τράπεζα Θεμάτων
    • Γεωμετρία – Τράπεζα Θεμάτων
  • Βιβλία
    • Σχολικά Βιβλία Δημοτικού
    • Σχολικά Βιβλία Γυμνασίου
    • Σχολικά Βιβλία Λυκείου
    • Λυσάρια Σχολικών Βιβλίων
  • Υλη
    • Υλη Μαθηματικών Δημοτικού
    • Υλη Μαθηματικών Γυμνασίου
    • Υλη Μαθηματικών Λυκείου ΓΕΛ
    • Υλη Μαθηματικών ΕΠΑΛ
  • Πανελλήνιες
    • Θέματα Πανελληνίων
    • Γενικά για τις Πανελλήνιες
  • Βάσεις
    • Βάσεις ΓΕΛ – ΕΠΑΛ – 10%
    • Βάσεις Γενικό Λύκειο
    • Βάσεις Εσπερινό Γενικό
    • Βάσεις Ημερήσιο ΕΠΑΛ
    • Βάσεις Εισαγωγής 10%
    • Βάσεις ανά Πόλη
    • Βάσεις σχολών Αθήνας
    • Βάσεις στη Θεσσαλονίκη
    • Βάσεις σχολών Πάτρας
    • Βάσεις σχολών Ηράκλειο
    • Βάσεις ανά Περιφέρεια
    • Βάσεις – Μόρια στην Αττική
    • Βάσεις – Μόρια Μακεδονία
    • Βάσεις στην Πελοπόννησο
    • Βάσεις – Μόρια στην Κρήτη
    • Βάσεις ανά Ομάδα Σχολών
    • Βάσεις Οικονομικές Σχολές
    • Βάσεις στα Πολυτεχνεία
    • Βάσεις Ιατρικές & Υγείας
    • Βάσεις Στρατιωτικές Σχολές
    • Βάσεις ανά Ίδρυμα
    • Βάσεις στο Καποδιστριακό
    • Βάσεις στο Αριστοτέλειο
    • Πανεπιστήμιο Πατρών
    • Πανεπιστήμιο Κρήτης
  • Math ΑΕΙ
    • Μαθηματικό Αθήνας | Ε.Κ.Π.Α
    • Μαθηματικό Θεσσαλονίκης
    • Μαθηματικό Πάτρας
    • Μαθηματικών Ηρακλείου | Κρήτη
    • Μαθηματικό Ιωαννίνων
    • Μαθηματικό Σάμου | Αιγαίο
    • Μαθηματικό Καστοριάς
    • Μαθηματικό Λαμίας | Θεσσαλία
    • Μαθηματικό Λευκωσίας | Κύπρος
    • Στατιστική Αθήνας | Ο.Π.Α.
    • Στατιστική Γρεβενών
    • Στατιστική Σάμου | Αιγαίο
    • Στατιστική Πειραιά
    • Εφαρμοσμένων Μαθ. ΕΜΠ
    • Εφαρμοσμένων Μαθ. Ηρακλείου
  • Μαθηματικοί
    • Έλληνες Μαθηματικοί
    • Γυναίκες Μαθηματικοί
    • Ξένοι Μαθηματικοί
    • Αρχαίοι Μαθηματικοί
  • Υπολογισμοί
    • Αλγεβρικοί Υπολογισμοί – Πράξεις
    • Υπολογισμοί Εμβαδών
    • Υπολογισμοί Όγκων
    • Υπολογισμοί Περιμέτρων
    • Υπολογισμοί σε Σχήματα
    • Υπολογισμοί σε Στερεά
    • Μετατροπή Μονάδων Μέτρησης
  • Δημοτικό
  • Γυμνάσιο
  • Λύκειο
  • ΕΠΑΛ
Βρες τα τετραγωνικά, το εμβαδόν στο ισοσκελές τριγωνικό πρίσμα.

Βρες τα τετραγωνικά, το εμβαδόν στο ισοσκελές τριγωνικό πρίσμα.

09/08/2015 Υπολογισμοί - Calculators, Υπολογισμοί εμβαδών

Ισοσκελές τριγωνικό πρίσμα – Υπολογισμός εμβαδού πρίσματος

Area of  triangular prism calculator – Online calculation

Δεδομένα
Μήκος βάσης (πλευρά ισοσκελούς τριγώνου) πρίσματος (b)
Ύψος βάσης (ισοσκελούς τριγώνου) πρίσματος (a)
Μήκος των 2 ίσων πλευρών βάσης (ισοσκελούς τριγώνου) πρίσματος (s)
Ύψος πρίσματος (h)
Αποτελέσματα
Εμβαδόν παράπλευρης επιφάνειας/εδρών ισοσκελούς τριγωνικού πρίσματος
Εμβαδόν τριγωνικών βάσεων ισοσκελούς τριγωνικού πρίσματος
Εμβαδόν συνολικής επιφάνειας ισοσκελούς τριγωνικού πρίσματος (A)
Όγκος ισοσκελούς τριγωνικού πρίσματος (V)

Πρίσμα – Γεωμετρία – Στερεομετρία – Γεωμετρικά Στερεά

Πρίσμα ονομάζεται το τρισδιάστατο γεωμετρικό σχήμα το οποίο οριοθετείται από δύο παράλληλα ίδια πολύγωνα και οι υπόλοιπες πλευρές του είναι ορθογώνια. Αυτές οι δύο πλευρές ονομάζονται βάσεις. Η απόσταση των δύο βάσεων ονομάζεται ύψος.

Τα πρίσματα και οι κύλινδροι μπορούν να προκύψουν με εξώθηση (extrusion) των βάσεών τους κατά h, όπου h το ύψος τους.

Το ανάπτυγμα του πρίσματος είναι ένα ορθογώνιο παραλληλόγραμμο, το οποίο αναδιπλώνεται για να αποδώσει όλα τα επιμέρους ορθογώνια, και οι δύο βάσεις συνδεδεμένες σε μία ακμή τους στις απέναντι πλευρές ενός επιμέρους ορθογωνίου. | via

Ισοσκελές τριγωνικό πρίσμα.  Σχήμα – Γεωμετρικό Στερεό

Area of  triangular prism calculator – Math Formulas

Ισοσκελές τριγωνικό πρίσμα. Όγκος - Μαθηματικός τύπος

Το εμβαδόν της παράπλευρης επιφάνειας (των εδρών) του ισοσκελούς τριγωνικού πρίσµατος είναι ουσιαστικά το άθροισμα των εμβαδώνν των τριών ορθογώνιων παραλληλογράμμων που προκύπτουν αν «ξεδιπλώσουμε» το πρίσμα.

Εμβαδόν παράπλευρης επιφάνειας – Μαθηματικός τύπος

Επομένως (χρησιμοποιώντας τους χαρακτήρες του σχήματος) ο τύπος υπολογισμού του εμβαδού της παράπλευρης επιφάνειας στο ισοσκελές τριγωνικό πρίσμα είναι ο εξής:

$$ Ε_{εδρών}=2·h·s + b·h $$

Εμβαδόν των δύο τριγωνικών βάσεων του ισοσκελούς τριγωνικού πρίσματος

Το εμβαδόν των δύο τριγωνικών βάσεων του ισοσκελούς τριγωνικού πρίσματος δίνεται από το διπλασιασμό του εμβαδού του ενός τριγώνου καθώς τα τρίγωνα των βάσεων είναι ίσα.

Επομένως ο τύπος υπολογισμού του εμβαδού των δύο τριγωνικών βάσεων στο ισοσκελές τριγωνικό πρίσμα είναι ο εξής:

$$ Ε_{βάσεων}= b·a $$

Εμβαδόν συνολικής επιφάνειας του ισοσκελούς τριγωνικού πρίσματος

Surface area of the triangular prism

Το εμβαδόν της συνολικής επιφάνειας του ισοσκελούς τριγωνικού πρίσματος είναι το άθροισμα του εμβαδού των εδρών και του εμβαδού των βάσεων.

Επομένως ο τύπος υπολογισμού του εμβαδού της συνολικής επιφάνειας (A) στο ισοσκελές τριγωνικό πρίσμα είναι ο εξής:

$$ A = Ε_{εδρών} + Ε_{βάσεων} $$

Ορισμός και στοιχεία του πρίσματος

  • Βάσεις πρίσματος καλούνται οι τομές των δυο παράλληλων επιπέδων με την πρισματική επιφάνεια
  • Παράπλευρες έδρες είναι τα τμήματα των εδρών της  πρισματικής επιφάνειας, που περιέχονται μεταξύ των βάσεων
  • Παράπλευρες ακμές είναι τα τμήματα των ακμών της πρισματικής επιφάνειας, που περιέχονται μεταξύ των βάσεων.
  • Έδρες πρίσματος είναι οι βάσεις και οι παράπλευρες έδρες.
  • Ακμές πρίσματος είναι οι πλευρές της βάσης και οι παράπλευρες ακμές.
  • Κορυφές πρίσματος είναι οι κορυφές των βάσεων.
  • Ύψος πρίσματος είναι η απόσταση των βάσεων.
  • Διαγώνιος πρίσματος είναι κάθε ευθύγραμμο τμήμα που τα άκρα του δεν είναι κορυφές της ίδιας έδρας.
  • Διαγώνιο επίπεδο πρίσματος είναι κάθε επίπεδο που ορίζεται από δυο παράπλευρες ακμές, που δεν ανήκουν στην ίδια παράπλευρη έδρα

Ειδικές κατηγορίες πρισμάτων

Ορθό καλείται ένα πρίσμα, όταν οι παράπλευρες ακμές είναι κάθετες στις βάσεις.

Κανονικό καλείται ένα πρίσμα, όταν είναι ορθό και επιπλέον οι βάσεις είναι κανονικά πολύγωνα.

Παραλληλεπίπεδο καλείται ένα πρίσμα, όταν οι βάσεις του είναι παραλληλόγραμμα

Μορφές – είδη Πρίσματος

Η ειδικότερη ονομασία ενός πρίσματος προσδιορίζεται από το πλήθος των πλευρών της βάσης.  Πενταγωνικό πρίσμα, τριγωνικό πρίσμα, εξαγωνικό πρίσμα κλπ. Από την παραλληλία των βάσεων και την παραλληλία των παράπλευρων ακμών στα πρίσματα προκύπτει

Σε κάθε πρίσμα ισχύουν οι προτάσεις:

  • οι παράπλευρες έδρες είναι παραλληλόγραμμα,
  • οι παράπλευρες ακμές είναι ίσες,
  • οι βάσεις είναι ίσες.
Online #ισοσκελές τριγωνικό #πρίσμα - #Υπολογισμός #εμβαδόν - Γεωμετρία
Share
  • Facebook
  • Twitter
  • LinkedIn

ΕτικέτεςΓεωμετρία Μαθητής Στερεά Τρίγωνο

Σχετικά στο Mathhmatika.gr

Απλή μέθοδος των τριών με ανάλογα ή αντιστρόφως ανάλογα ποσά online

Κάνε online την απλή μέθοδο των τριών. Επεξήγηση μεθόδου. Χιαστί

11/05/2019

Υπολογισμός εκπτώσεων. Ποσοστό ή ποσό έκπτωσης, τελική & αρχική τιμή

Εκπτώσεις. Ποσό πριν και μετά την έκπτωση. Αρχική και τελική τιμή.

09/05/2019

Υπολογισμός της Διακύμανσης ως Μέτρο Διασποράς ενός συνόλου αριθμών

Υπολόγισε τη διακύμανση ενός συνόλου αριθμών. Μέτρο Διασποράς

05/05/2019

Υπολογισμός της Τυπικής Απόκλισης ως Μέτρο Διασποράς μίας ομάδας τιμών

Υπολόγισε την τυπική απόκλιση ενός συνόλου αριθμών. Μέτρο Διασποράς

04/05/2019

Εύρεση επικρατούσας ή δεσπόζουσας ή συχνότερης τιμής σε σύνολο αριθμών

Βρες την επικρατούσα τιμή (υπάρχει περισσότερες φορές) σε ένα σύνολο

04/05/2019

Πολλαπλασιασμός αριθμού με πίνακα – Βαθμωτός πολλαπλασιασμός online

Βρες online το γινόμενο ενός αριθμού με έναν πίνακα. Πολλαπλασιασμός

21/04/2019

Πρόσφατα στο «Μαθηματικά»

  • Ομάδες Προσανατολισμού - Επιστημονικά Πεδία ● Ό,τι πρέπει να ξέρετε

    Ομάδες Προσανατολισμού – Επιστημονικά Πεδία ● Ό,τι πρέπει να ξέρετε

    01/08/2021
  • Τι προσανατολισμό – πεδίο να διαλέξω για να σπουδάσω Μαθηματικά;

    01/08/2021
  • Σχολές πασπαρτού! Τμήματα που υπάρχουν σε όλα τα επιστημονικά πεδία

    Σχολές πασπαρτού! Τμήματα που υπάρχουν σε όλα τα επιστημονικά πεδία

    01/08/2021
  • Πρόγραμμα επαναληπτικών πανελλαδικών εξετάσεων 2020 για ΓΕΛ & ΕΠΑΛ

    Πρόγραμμα επαναληπτικών πανελλαδικών εξετάσεων 2021 για ΓΕΛ & ΕΠΑΛ

    01/08/2021
  • Εξεταστέα ύλη Μαθηματικών Προσανατολισμού Γ’ Λυκείου – 2019-2020

    Εξεταστέα ύλη Μαθηματικών Προσανατολισμού Γ’ Λυκείου 2021 – 2022

    18/07/2021
  • Εξεταστέα ύλη Μαθηματικών – Άλγεβρας Γ’ Ημερήσιου ΕΠΑΛ – 2019-2020

    Εξεταστέα ύλη Μαθηματικών – Άλγεβρας Γ’ Ημερήσιου ΕΠΑΛ 2021 – 2022

    18/07/2021
© Copyright 2023 Mathhmatika.gr About us Πολιτική Απορρήτου Όροι Χρήσης Sitemap Επικοινωνία

Εισαγωγή/επεξεργασία συνδέσμου

Δώστε την URL προορισμού

Ή επιλέξτε από τα υπάρχοντα άρθρα/σελίδες

    Δεν ορίσατε όρο αναζήτησης. Προβάλλονται τα πιο πρόσφατα. Αναζήτηση ή χρησιμοποιήστε το πάνω και κάτω πλήκτρο να επιλέξετε ένα στοιχείο.