08/02/23
  • Πανελλήνιες 2021
  • Παγκύπριες
  • Live Νέα για Μαθηματικά
  • I Love ♥ Math
  • Math Movies & Series
  • Κομπιουτεράκι

Mathhmatika.grMathhmatika.gr 1+1=2

  • Home
  • Math News
    • Πανελλήνιες 2021 – Live Νέα
    • Μαθηματικά Νέα & Ειδήσεις
    • Mathematics News – Live
  • Τράπεζα θεμάτων
    • Άλγεβρα – Τράπεζα Θεμάτων
    • Γεωμετρία – Τράπεζα Θεμάτων
  • Βιβλία
    • Σχολικά Βιβλία Δημοτικού
    • Σχολικά Βιβλία Γυμνασίου
    • Σχολικά Βιβλία Λυκείου
    • Λυσάρια Σχολικών Βιβλίων
  • Υλη
    • Υλη Μαθηματικών Δημοτικού
    • Υλη Μαθηματικών Γυμνασίου
    • Υλη Μαθηματικών Λυκείου ΓΕΛ
    • Υλη Μαθηματικών ΕΠΑΛ
  • Πανελλήνιες
    • Θέματα Πανελληνίων
    • Γενικά για τις Πανελλήνιες
  • Βάσεις
    • Βάσεις ΓΕΛ – ΕΠΑΛ – 10%
    • Βάσεις Γενικό Λύκειο
    • Βάσεις Εσπερινό Γενικό
    • Βάσεις Ημερήσιο ΕΠΑΛ
    • Βάσεις Εισαγωγής 10%
    • Βάσεις ανά Πόλη
    • Βάσεις σχολών Αθήνας
    • Βάσεις στη Θεσσαλονίκη
    • Βάσεις σχολών Πάτρας
    • Βάσεις σχολών Ηράκλειο
    • Βάσεις ανά Περιφέρεια
    • Βάσεις – Μόρια στην Αττική
    • Βάσεις – Μόρια Μακεδονία
    • Βάσεις στην Πελοπόννησο
    • Βάσεις – Μόρια στην Κρήτη
    • Βάσεις ανά Ομάδα Σχολών
    • Βάσεις Οικονομικές Σχολές
    • Βάσεις στα Πολυτεχνεία
    • Βάσεις Ιατρικές & Υγείας
    • Βάσεις Στρατιωτικές Σχολές
    • Βάσεις ανά Ίδρυμα
    • Βάσεις στο Καποδιστριακό
    • Βάσεις στο Αριστοτέλειο
    • Πανεπιστήμιο Πατρών
    • Πανεπιστήμιο Κρήτης
  • Math ΑΕΙ
    • Μαθηματικό Αθήνας | Ε.Κ.Π.Α
    • Μαθηματικό Θεσσαλονίκης
    • Μαθηματικό Πάτρας
    • Μαθηματικών Ηρακλείου | Κρήτη
    • Μαθηματικό Ιωαννίνων
    • Μαθηματικό Σάμου | Αιγαίο
    • Μαθηματικό Καστοριάς
    • Μαθηματικό Λαμίας | Θεσσαλία
    • Μαθηματικό Λευκωσίας | Κύπρος
    • Στατιστική Αθήνας | Ο.Π.Α.
    • Στατιστική Γρεβενών
    • Στατιστική Σάμου | Αιγαίο
    • Στατιστική Πειραιά
    • Εφαρμοσμένων Μαθ. ΕΜΠ
    • Εφαρμοσμένων Μαθ. Ηρακλείου
  • Μαθηματικοί
    • Έλληνες Μαθηματικοί
    • Γυναίκες Μαθηματικοί
    • Ξένοι Μαθηματικοί
    • Αρχαίοι Μαθηματικοί
  • Υπολογισμοί
    • Αλγεβρικοί Υπολογισμοί – Πράξεις
    • Υπολογισμοί Εμβαδών
    • Υπολογισμοί Όγκων
    • Υπολογισμοί Περιμέτρων
    • Υπολογισμοί σε Σχήματα
    • Υπολογισμοί σε Στερεά
    • Μετατροπή Μονάδων Μέτρησης
  • Δημοτικό
  • Γυμνάσιο
  • Λύκειο
  • ΕΠΑΛ

Όγκος στο ισοσκελές τριγωνικό πρίσμα. Υπολογισμός και επεξήγηση.

05/02/2019 Υπολογισμοί - Calculators, Υπολογισμοί όγκων

Ισοσκελές τριγωνικό πρίσμα – Υπολογισμός όγκου πρίσματος

Volume of a Triangular Prism Calculator – Online calculation

Δεδομένα
Μήκος βάσης (πλευρά ισοσκελές τριγώνου) πρίσματος (b)
Ύψος βάσης (ισοσκελές τριγώνου) πρίσματος (a)
Ύψος πρίσματος (h)
Αποτελέσματα
Όγκος ισοσκελές τριγωνικού πρίσματος (V)

Πρίσμα – Γεωμετρία – Στερεομετρία – Γεωμετρικά Στερεά

Πρίσμα ονομάζεται το τρισδιάστατο γεωμετρικό σχήμα το οποίο οριοθετείται από δύο παράλληλα ίδια πολύγωνα και οι υπόλοιπες πλευρές του είναι ορθογώνια. Αυτές οι δύο πλευρές ονομάζονται βάσεις. Η απόσταση των δύο βάσεων ονομάζεται ύψος.

Τα πρίσματα και οι κύλινδροι μπορούν να προκύψουν με εξώθηση (extrusion) των βάσεών τους κατά h, όπου h το ύψος τους.

Το ανάπτυγμα του πρίσματος είναι ένα ορθογώνιο παραλληλόγραμμο, το οποίο αναδιπλώνεται για να αποδώσει όλα τα επιμέρους ορθογώνια, και οι δύο βάσεις συνδεδεμένες σε μία ακμή τους στις απέναντι πλευρές ενός επιμέρους ορθογωνίου. | via

Ισοσκελές τριγωνικό πρίσμα. Όγκος – Μαθηματικός τύπος

Volume of a isosceles triangular Prism Formula

Ισοσκελές τριγωνικό πρίσμα. Όγκος - Μαθηματικός τύπος

Ο όγκος (V) ενός ισοσκελές τριγωνικού πρίσµατος δίδεται από τον κάτωθι μαθηματικό τύπο :

$$ V = 1/2 · (b · a) · h $$

Ορισμός και στοιχεία του πρίσματος

  • Βάσεις πρίσματος καλούνται οι τομές των δυο παράλληλων επιπέδων με την πρισματική επιφάνεια
  • Παράπλευρες έδρες είναι τα τμήματα των εδρών της  πρισματικής επιφάνειας, που περιέχονται μεταξύ των βάσεων
  • Παράπλευρες ακμές είναι τα τμήματα των ακμών της πρισματικής επιφάνειας, που περιέχονται μεταξύ των βάσεων.
  • Έδρες πρίσματος είναι οι βάσεις και οι παράπλευρες έδρες.
  • Ακμές πρίσματος είναι οι πλευρές της βάσης και οι παράπλευρες ακμές.
  • Κορυφές πρίσματος είναι οι κορυφές των βάσεων.
  • Ύψος πρίσματος είναι η απόσταση των βάσεων.
  • Διαγώνιος πρίσματος είναι κάθε ευθύγραμμο τμήμα που τα άκρα του δεν είναι κορυφές της ίδιας έδρας.
  • Διαγώνιο επίπεδο πρίσματος είναι κάθε επίπεδο που ορίζεται από δυο παράπλευρες ακμές, που δεν ανήκουν στην ίδια παράπλευρη έδρα

Ειδικές κατηγορίες πρισμάτων

Ορθό καλείται ένα πρίσμα, όταν οι παράπλευρες ακμές είναι κάθετες στις βάσεις.

Κανονικό καλείται ένα πρίσμα, όταν είναι ορθό και επιπλέον οι βάσεις είναι κανονικά πολύγωνα.

Παραλληλεπίπεδο καλείται ένα πρίσμα, όταν οι βάσεις του είναι παραλληλόγραμμα

Μορφές – είδη Πρίσματος

Η ειδικότερη ονομασία ενός πρίσματος προσδιορίζεται από το πλήθος των πλευρών της βάσης.  Πενταγωνικό πρίσμα, τριγωνικό πρίσμα, εξαγωνικό πρίσμα κλπ. Από την παραλληλία των βάσεων και την παραλληλία των παράπλευρων ακμών στα πρίσματα προκύπτει

Σε κάθε πρίσμα ισχύουν οι προτάσεις:

  • οι παράπλευρες έδρες είναι παραλληλόγραμμα,
  • οι παράπλευρες ακμές είναι ίσες,
  • οι βάσεις είναι ίσες.
Online #ισοσκελές τριγωνικό #πρίσμα - #Υπολογισμός #όγκος - Γεωμετρία
Share
  • Facebook
  • Twitter
  • LinkedIn

ΕτικέτεςΓεωμετρία Μαθητής Στερεά Τρίγωνο

Σχετικά στο Mathhmatika.gr

Απλή μέθοδος των τριών με ανάλογα ή αντιστρόφως ανάλογα ποσά online

Κάνε online την απλή μέθοδο των τριών. Επεξήγηση μεθόδου. Χιαστί

11/05/2019

Υπολογισμός εκπτώσεων. Ποσοστό ή ποσό έκπτωσης, τελική & αρχική τιμή

Εκπτώσεις. Ποσό πριν και μετά την έκπτωση. Αρχική και τελική τιμή.

09/05/2019

Υπολογισμός της Διακύμανσης ως Μέτρο Διασποράς ενός συνόλου αριθμών

Υπολόγισε τη διακύμανση ενός συνόλου αριθμών. Μέτρο Διασποράς

05/05/2019

Υπολογισμός της Τυπικής Απόκλισης ως Μέτρο Διασποράς μίας ομάδας τιμών

Υπολόγισε την τυπική απόκλιση ενός συνόλου αριθμών. Μέτρο Διασποράς

04/05/2019

Εύρεση επικρατούσας ή δεσπόζουσας ή συχνότερης τιμής σε σύνολο αριθμών

Βρες την επικρατούσα τιμή (υπάρχει περισσότερες φορές) σε ένα σύνολο

04/05/2019

Πολλαπλασιασμός αριθμού με πίνακα – Βαθμωτός πολλαπλασιασμός online

Βρες online το γινόμενο ενός αριθμού με έναν πίνακα. Πολλαπλασιασμός

21/04/2019

Πρόσφατα στο «Μαθηματικά»

  • Ομάδες Προσανατολισμού - Επιστημονικά Πεδία ● Ό,τι πρέπει να ξέρετε

    Ομάδες Προσανατολισμού – Επιστημονικά Πεδία ● Ό,τι πρέπει να ξέρετε

    01/08/2021
  • Τι προσανατολισμό – πεδίο να διαλέξω για να σπουδάσω Μαθηματικά;

    01/08/2021
  • Σχολές πασπαρτού! Τμήματα που υπάρχουν σε όλα τα επιστημονικά πεδία

    Σχολές πασπαρτού! Τμήματα που υπάρχουν σε όλα τα επιστημονικά πεδία

    01/08/2021
  • Πρόγραμμα επαναληπτικών πανελλαδικών εξετάσεων 2020 για ΓΕΛ & ΕΠΑΛ

    Πρόγραμμα επαναληπτικών πανελλαδικών εξετάσεων 2021 για ΓΕΛ & ΕΠΑΛ

    01/08/2021
  • Εξεταστέα ύλη Μαθηματικών Προσανατολισμού Γ’ Λυκείου – 2019-2020

    Εξεταστέα ύλη Μαθηματικών Προσανατολισμού Γ’ Λυκείου 2021 – 2022

    18/07/2021
  • Εξεταστέα ύλη Μαθηματικών – Άλγεβρας Γ’ Ημερήσιου ΕΠΑΛ – 2019-2020

    Εξεταστέα ύλη Μαθηματικών – Άλγεβρας Γ’ Ημερήσιου ΕΠΑΛ 2021 – 2022

    18/07/2021
© Copyright 2023 Mathhmatika.gr About us Πολιτική Απορρήτου Όροι Χρήσης Sitemap Επικοινωνία

Εισαγωγή/επεξεργασία συνδέσμου

Δώστε την URL προορισμού

Ή επιλέξτε από τα υπάρχοντα άρθρα/σελίδες

    Δεν ορίσατε όρο αναζήτησης. Προβάλλονται τα πιο πρόσφατα. Αναζήτηση ή χρησιμοποιήστε το πάνω και κάτω πλήκτρο να επιλέξετε ένα στοιχείο.